1	(a	(i)	C ₄ H ₈ only CH ₂ (Allow C ₁ H ₂)	[2
		(ii)	Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene methyl propene	∍ or [1]
		(iii)	M1 same molecular formula	[1]
			M2 different structural formulae or different structures or different arrangement of atoms	[1]
		(iv)	If 'No': one an alkane, the other an alkene or one is saturated / has single bonds, the other is unsaturated / has a double bond ignore: references to the 'functional group'	
			If 'yes' both alkanes or both saturated ignore: references to the 'functional group'	[1]
	(b)	(i)	M1 Action of heat or catalyst or thermal decomposition (on an alkane) Ignore steam. Ignore pressure.	[1]
			M2 Long-chained molecules or alkanes form smaller molecules (not smaller fraction) forms smaller alkenes (or alkanes)	or [1]
		(ii)	C ₁₀ H ₂₂	[1]
	(c)	(i)	M1 Correct structure of one repeat unit	[1]
			M2 Continuation bonds COND on M1	[1]
			M3 use of brackets and subscript 'n' COND on M1 and M2	[1]
			$\frac{\begin{pmatrix} H & H \\ I & I \\ C & C \\ I & I \\ C H_3 & C H_3 \end{pmatrix}}{\begin{pmatrix} H & H \\ C & C \\ I & I \\ C & n \end{pmatrix}} = 3 \text{ marks}$	

(ii) dibromoethane or 1,2-dibromoethane

2	(a	(i)	35 cm ³ 40 cm ³	[1] [1]
		(ii)	forms carbon monoxide	[1]
			poisonous or toxic or lethal or prevents blood carrying oxygen or effect on haemoglobin NOT just harmful	[1]
	(b)	(chlorobutane or butyl chloride number not required but if given must be 1, it must be in correct position	[1]
		(ii)	light or UV or 200°C or lead tetraethyl	[1]
		(iii)	any correct equation for example 2-chlorobutane or dichlorobutane	[1]
	(c)		correct repeat unit COND continuation -(CH(CH ₃)-CH ₂)-	[1] [1]
		(ii)	butan-1-ol or butan-2-ol or butanol if number given then formula must correspond for second mark and number must be correct position	[1] in
			structural formula of above CH_3 - CH_2 - CH_2 - CH_2OH or CH_3 - $CH(OH)$ - CH_2 - CH_3 NOT C_4H_9OH if first mark not awarded then either formula will gain mark [1] ACCEPT either formula for "butanol"	[1]
		(iii)	CH_3 - $CH(Cl)$ - CH_3 or CH_3 - CH_2 - CH_2 - Cl NOT C_3H_7Cl response must not include HCl if equation given look at RHS only	[1]
			[Total:	12]

3	(a)	butanol no number needed but if one is given it has to be 1		[1]
		structural formula (all bonds shown) accept –OH NOT –HO		
		ethanoic acid structural formula (all bonds shown) accept –OH NOT –HO no conseq marking if all bonds are not shown (CH ₃ –CH ₂ –), penalise once		[1] [1]
	(b)	(i)	must have correct ester linkage COND continuation and a group on either side of the ester group	[1] [1]
			Accept -COO-	
		(ii)	accept any sensible suggestion ropes, clothing, bottles, packaging, bags	[1]
	(c)	(i)	8	[1]
		(ii)	double bond becomes single and 4 bonds per carbon atom COND a bromine atom on each carbon $C_2H_4Br_2$ ONLY [1] accept a structural formula with hydrogen atoms	[1] [1]
		(iii)	corn oil	[1]
	(d)	100g of fat react with 86.2g of iodine 884g of fat react with 762 g of iodine limit 762 x 2		[1]
	one mole of fat reacts with 762/254 moles of iodine molecules one mole of fat reacts with 3 moles of iodine molecules			[1]
		nun limi	nber of double bonds in one molecule of fat is 3 t 6	[1]
	consequential marking allowed provided the number of double bonds is an			

[Total: 14]

4	(a	(i) any correct equation		[1]
		(ii)	structural formulae from but-1-ene, but-2-ene, methylpropene or cyclobutane Any TWO	[2]
	(b)	(light or 200°C or lead tetraethyl	[1]
		(ii)	substitution or photochemical or chlorination or free radical or halogenation	[1]
		(iii)	1-chlorobutane, 2-chlorobutane, dichlorobutane etc. Any TWO	[2]
	(c)	(i)	CH ₃ CH ₂ CH ₂ OH or CH ₃ CH(OH)CH ₃	[1]
		(ii)	CH₃CH(Br)CH₂Br NOT 1,3-dibromopropane	[1]
	(d)	moles of CH_3 - $CH = CH_2$ reacted = 1.4/42 = 0.033		[1]
		max	conseq maximum moles of CH_3 - $CH(I)$ - CH_3 that could be formed = 0.033 [1	
		max acc	conseqmaximum mass of 2-iodopropane that could be formed = 5.61 g [1accept $170 \times 0.033 = 5.61$ and $170 \times 0.033333 = 5.67$	
		consequences greater than 100%percentage yield 4.0/5.67 x 100 = 70.5%[1]Do not mark consequently to a series of small integers. There has to be a serious attempt to answer the question, then consequential marking is appropriate.		